高中数学中有三次方程的问题吗?
中学(包括高中)阶段不讲一元三次方程的解法。但利用因式分解知识可解一些特殊的一元三次方程一元三次方程的标准形式(即所有一元三次方程经整理都能得到的形式):ax3+bx2+cx+d=0(a,b,c,d为常数,x为未知数,且a≠0)。一元三次方程的公式解法有卡尔丹公式法与盛金公式法。
我们知道,对于任意一个n次多项式,我们总可以只借助最高次项和(n-1)次项,根据二项式定理,凑出完全n次方项,其结果除了完全n次方项,后面既可以有常数项,也可以有一次项、二次项、三次项等,直到(n-2)次项。
由于二次以上的多项式,在配n次方之后,并不能总保证在完全n次方项之后仅有常数项。于是,对于二次以上的多项式方程,我们无法简单地像一元二次方程那样,只需配出关于x的完全平方式,然后将后面仅剩的常数项移到等号另一侧,再开平方,就可以推出通用的求根公式。
特别地,对于三次多项式,配立方,其结果除了完全立方项,后面既可以有常数项,也可以有一次项。一个自然的想法就是如何将一般的三次方程化为不带二次项的三次方程。
一般的一元三次方程,可以通过的代换消掉二次项,得到,所以解三次方程的关键是解只含有一次项的方程。含有二次项但不含有一次项的一元三次方程,经过代换后可以消掉二次项,但是却会冒出一次项出来。对于方程,代换后得到的是。因为b≠0 ,所以一定会有一次项冒出来。
以上内容来源:百度百科-一元三次方程