5个回答
展开全部
|x-5|-|2x+3|-1<0
就可以使两个绝对值相等
|x-5|=|2x+3|
1、x-5=2x+3
x=-8
2、x-5=-(2x+3)
3x=2
x=2/3
就可以使两个绝对值相等
|x-5|=|2x+3|
1、x-5=2x+3
x=-8
2、x-5=-(2x+3)
3x=2
x=2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
此需要进行讨论
1)x>=5
则(x-5)-(2x+3)<1
-x-8<1
得x>-9
但结合讨论的条件x应>=5
2)-3/2<=x<5
则(5-x)-(2x+3)<1
2-3x<1
得x>1/3 结合讨论条件,1/3<x<5
3)x<-3/2
则(5-x)+(2x+3)<1
x+8<1
x<-7
最终答案x>1/3或x<-7
1)x>=5
则(x-5)-(2x+3)<1
-x-8<1
得x>-9
但结合讨论的条件x应>=5
2)-3/2<=x<5
则(5-x)-(2x+3)<1
2-3x<1
得x>1/3 结合讨论条件,1/3<x<5
3)x<-3/2
则(5-x)+(2x+3)<1
x+8<1
x<-7
最终答案x>1/3或x<-7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x≥5时,
|x-5|-|2x+3|=x-5-(2x+3)=-x-8<1
x>-9
解集:x≥5
-3/2≤x<5时
|x-5|-|2x+3|=5-x-(2x+3)=2-3x<1
x>1/3
解集:1/3<x<5
x<-3/2时
|x-5|-|2x+3|=5-x+(2x+3)=8+x<1
x<-7
解集:x<-7
所以,本题解集为:
x<-7,或,x>1/3
|x-5|-|2x+3|=x-5-(2x+3)=-x-8<1
x>-9
解集:x≥5
-3/2≤x<5时
|x-5|-|2x+3|=5-x-(2x+3)=2-3x<1
x>1/3
解集:1/3<x<5
x<-3/2时
|x-5|-|2x+3|=5-x+(2x+3)=8+x<1
x<-7
解集:x<-7
所以,本题解集为:
x<-7,或,x>1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不是解方程,是解不等式!
解:
当x<-3/2时,原式去绝对值:5-x+2x+3<1,得x<-7,因x<-3/2所以:x<-7。
当5>=x>=-3/2,原式去绝对值得:5-x-2x-3<1,得x>1/3,又-3/2<=x=<5.所以1/3=<x=<5
当x>5.去绝对值得:x-5-2x-3<1得x>-9.所以x>5。
解:
当x<-3/2时,原式去绝对值:5-x+2x+3<1,得x<-7,因x<-3/2所以:x<-7。
当5>=x>=-3/2,原式去绝对值得:5-x-2x-3<1,得x>1/3,又-3/2<=x=<5.所以1/3=<x=<5
当x>5.去绝对值得:x-5-2x-3<1得x>-9.所以x>5。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询