已知点P(x,y)是圆(x+2)2+y2=1上的任意一点 (1)求P点到直线3x+4y+12=0的

距离的最大值和最小值(2)求x+y的最大值和最小值(3)求y-2/x-1的最大值和最小值... 距离的最大值和最小值
(2)求x+y的最大值和最小值
(3)求y-2/x-1的最大值和最小值
展开
 我来答
tony罗腾
2013-12-17 · 知道合伙人软件行家
tony罗腾
知道合伙人软件行家
采纳数:1381 获赞数:293891
本一类院校毕业,之前参与过百度专家的活动,有网络在线答题的经验,相信我,没错的!

向TA提问 私信TA
展开全部
用圆的参数方程
P(cosa-2,sina) 0<=a<2π
(1)点P到直线的距离=|3cosa-6+4sina+12|/5
=|5sin(a+arccos(4/5))+6|/5
最小值为1/5,最大值为11/5
(2)x+y=cosa+sina-2
=√2sin(a+π/4)-2
最大值为√2-2,最小值为-√2-2
(3)(y-2)/(x-1)=(sina-2)/(cosa-3)
令t=tan(a/2) sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2)
(y-2)/(x-1)=(2t-2-2t^2)/(1-t^2-3-3t^2)
=(t^2-t+1)/(2t^2+1)
=1/2*(t^2+1/2-t+1/2)/(t^2+1/2)

=1/2*[1-(t-1/2)/(t^2+1/2)]
=1/2-1/2*(t-1/2)/[(t-1/2)^2+(t-1/2)+3/4]
=1/2-1/2*1/[(t-1/2)+3/4*1/(t-1/2)+1]
最小值为(3-√3)/4,最大值为(3+√3)/4
当且仅当t=(√3+1)/2和(1-√3)/2时,等号成立
更多追问追答
追问
设参数方程然后往里面带?  为什么我们学校都用平面几何解的..
追答
也可以啊,2种方法都可以做的!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式