已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列。
展开全部
an=a1+(n-1)d
a1=1
a1,a3,a9成等比数列
a1.a9 = (a3)^2
1+8d = (1+2d)^2
4d^2-4d=0
d=1
an =n
bn = an . 2^an
= n.2^n
let
S = 1.2^1+2.2^2+...+n.2^n (1)
2S = 1.2^2+2.2^3+...+n.2^(n+1) (2)
(2)-(1)
S = n.2^(n+1) -[2+2^2+...+2^n]
=n.2^(n+1) -2(2^n-1)
= 2+ (2n-2).2^n
Sn = b1+b2+...+bn = S =2+ (2n-2).2^n
a1=1
a1,a3,a9成等比数列
a1.a9 = (a3)^2
1+8d = (1+2d)^2
4d^2-4d=0
d=1
an =n
bn = an . 2^an
= n.2^n
let
S = 1.2^1+2.2^2+...+n.2^n (1)
2S = 1.2^2+2.2^3+...+n.2^(n+1) (2)
(2)-(1)
S = n.2^(n+1) -[2+2^2+...+2^n]
=n.2^(n+1) -2(2^n-1)
= 2+ (2n-2).2^n
Sn = b1+b2+...+bn = S =2+ (2n-2).2^n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询