1个回答
展开全部
希望你学过复数的三角形式...
设z=cosx+isinx
由棣美弗定理 z^n=cosnx+isinnx
则上式左边即为
z+z^2+z^3+...+z^n的实部
又z+z^2+...+z^n=z(1-z^n)/(1-z)
=(cosx+isinx)(1-cosnx-isinnx)(1-cosx+isinx)/[(1-cosx)^2+sin^2x]
确实很冗长 我都快吓晕了....
然后只需把分子实部找出来,利用组合原理按顺序找
比如找第一个括号的cosx 然后第二个括号的1 第三个括号的1和cosx
然后依次 注意要乘都有i的 比如 找了isinx 就要搭配isinnx和1-cosx
这样
实部A=(cosnx+cosx-cos(n+1)x-1)/2(1-cosx)
=2cos((n+1)x/2)sin((n-1)x/2)-2cos^2((n+1)x/2)/4sin^2(x/2)
提公因式 再和差化积
=cos((n+1)x/2)*2sin(nx/2)sin(x/2)/2sin^2(x/2)
=右边
故等式得证
设z=cosx+isinx
由棣美弗定理 z^n=cosnx+isinnx
则上式左边即为
z+z^2+z^3+...+z^n的实部
又z+z^2+...+z^n=z(1-z^n)/(1-z)
=(cosx+isinx)(1-cosnx-isinnx)(1-cosx+isinx)/[(1-cosx)^2+sin^2x]
确实很冗长 我都快吓晕了....
然后只需把分子实部找出来,利用组合原理按顺序找
比如找第一个括号的cosx 然后第二个括号的1 第三个括号的1和cosx
然后依次 注意要乘都有i的 比如 找了isinx 就要搭配isinnx和1-cosx
这样
实部A=(cosnx+cosx-cos(n+1)x-1)/2(1-cosx)
=2cos((n+1)x/2)sin((n-1)x/2)-2cos^2((n+1)x/2)/4sin^2(x/2)
提公因式 再和差化积
=cos((n+1)x/2)*2sin(nx/2)sin(x/2)/2sin^2(x/2)
=右边
故等式得证
参考资料: 可能会让你很痛苦,但是我只能想到用复数做了,等待高手的简便方法...
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询