已知函数f(x)=Acos(ωx+Φ)(A>0,ω>0,0<Φ<π/2)的图像过点(0,1/2),最小正周期为2π/3,且最小值为-1
(1)求函数f(x)的解析式(2)若x属于【π/6,m】,f(x)的值域是【-1,-根号3/2】,求m的取值范围...
(1)求函数f(x)的解析式 (2)若x属于【π/6,m】,f(x)的值域是【-1,-根号3/2】,求m的取值范围
展开
推荐于2016-08-21 · 知道合伙人教育行家
关注
展开全部
(1)f(x)=Acos(ωx+ϕ), T=2π/ω=2π/3, 所以ω=3, 最小值为-1,所以A=1
f(x)=cos(3x+ϕ), (0,1/2)代入, cosϕ=1/2, 因为ϕ为锐角, 所以ϕ=π/3
(2)f(x)=cos(3x+π/3), π/6≤x≤m, π/2≤3x≤3m, 5π/6≤3x+π/3≤3m+π/3
因为值域为[-1,-√3/2],所以π≤3m+π/3≤7π/6, 得2π/9≤m≤5π/18
f(x)=cos(3x+ϕ), (0,1/2)代入, cosϕ=1/2, 因为ϕ为锐角, 所以ϕ=π/3
(2)f(x)=cos(3x+π/3), π/6≤x≤m, π/2≤3x≤3m, 5π/6≤3x+π/3≤3m+π/3
因为值域为[-1,-√3/2],所以π≤3m+π/3≤7π/6, 得2π/9≤m≤5π/18
展开全部
答:
1)
f(x)=Acos(wx+b)最小正周期T=2π/w=2π/3
解得:w=3
最小值f(x)=-A=-1,A=1
f(x)=cos(3x+b)经过点(0,1/2)
f(0)=cosb=1/2,b=π/3
f(x)=cos(3x+π/3)
2)
π/6<=x<=m,π/2<=3x<=3m
所以:5π/6<=3x+π/3<=3m+π/3
因为:-1<=f(x)=cos(3x+π/3)<=-√3/2
所以:π<=3m+π/3<=7π/6
所以:2π/3<3m<=5π/6
解得:2π/9<=m<=5π/18
1)
f(x)=Acos(wx+b)最小正周期T=2π/w=2π/3
解得:w=3
最小值f(x)=-A=-1,A=1
f(x)=cos(3x+b)经过点(0,1/2)
f(0)=cosb=1/2,b=π/3
f(x)=cos(3x+π/3)
2)
π/6<=x<=m,π/2<=3x<=3m
所以:5π/6<=3x+π/3<=3m+π/3
因为:-1<=f(x)=cos(3x+π/3)<=-√3/2
所以:π<=3m+π/3<=7π/6
所以:2π/3<3m<=5π/6
解得:2π/9<=m<=5π/18
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询