如图所示,竖直固定放置的粗糙斜面AB的下端与光滑的圆弧BCD的B点相切,圆弧轨道的半径为R,圆心O与A、D在

如图所示,竖直固定放置的粗糙斜面AB的下端与光滑的圆弧BCD的B点相切,圆弧轨道的半径为R,圆心O与A、D在同一水平面上,∠COB=θ,现有质量为m的小物体从距D点为Rc... 如图所示,竖直固定放置的粗糙斜面AB的下端与光滑的圆弧BCD的B点相切,圆弧轨道的半径为R,圆心O与A、D在同一水平面上,∠COB=θ,现有质量为m的小物体从距D点为 Rcosθ 4 的地方无初速的释放,已知物体恰能从D点进入圆轨道.求:(1)为使小物体不会从A点冲出斜面,小物体与斜面间的动摩擦因数至少为多少?(2)若小物体与斜面间的动摩擦因数 μ= sinθ 2cosθ ,则小物体在斜面上通过的总路程大小?(3)小物体通过圆弧轨道最低点C时,对C的最大压力和最小压力各是多少? 展开
 我来答
霸分甜3
2014-09-27 · TA获得超过146个赞
知道答主
回答量:107
采纳率:0%
帮助的人:140万
展开全部
(1)为使小物体不会从A点冲出斜面,由动能定理得mg
Rcosθ
4
-μmgcosθ
Rcosθ
sinθ
=0
解得动摩擦因数至少为:μ=
sinθ
4cosθ

(2)分析运动过程可得,最终小物体将从B点开始做往复的运动,由动能定理得
mg(
Rcosθ
4
+Rcosθ)-μmgScosθ=0
解得小物体在斜面上通过的总路程为:S=
5Rcosθ
2sinθ

(3)由于小物体第一次通过最低点时速度最大,此时压力最大,由动能定理,得
mg(
Rcosθ
4
+R)=
1
2
mv 2
由牛顿第二定律,得
N max -mg=m
v 2
R

解得N max =3mg+
1
2
mgcosθ
最终小物体将从B点开始做往复的运动,则有
mgR(1-cosθ)=
1
2
mv ′2
N min -mg=m
v 2
R

联立以上两式解得N min =mg(3-2cosθ)
由牛顿第三定律,得小物体通过圆弧轨道最低点C时对C的最大压力
N max =3mg+
1
2
mgcosθ,
最小压力 N min =mg(3-2cosθ).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式