已知数列{an}满足a1=1,an+1=n+2nan+1(n∈N*).(1)证明数列{ann}是等差数列;(2)求数列{an}的通项
已知数列{an}满足a1=1,an+1=n+2nan+1(n∈N*).(1)证明数列{ann}是等差数列;(2)求数列{an}的通项公式;(3)设bn=2nan,求证:b...
已知数列{an}满足a1=1,an+1=n+2nan+1(n∈N*).(1)证明数列{ann}是等差数列;(2)求数列{an}的通项公式;(3)设bn=2nan,求证:b1+b2+…+bn<6.
展开
1个回答
展开全部
(1)证明:∵an+1=
an+1,∴an=
an-1+1
两式相减可得an+1-an=
an-
an-1,
整理可得
?
=
?
,
∴数列{
}是等差数列;
(2)解:∵a1=1,an+1=
an+1,∴a2=3a1+1=4
∴
?
=1
∴数列{
}是以1为首项,1为公差的等差数列
∴
=n,
∴an=n2;
(3)证明:n≥2时,bn=
=
=
n+2 |
n |
n+1 |
n?1 |
两式相减可得an+1-an=
n+2 |
n |
n+1 |
n?1 |
整理可得
an+1 |
n+1 |
an |
n |
an |
n |
an?1 |
n?1 |
∴数列{
an |
n |
(2)解:∵a1=1,an+1=
n+2 |
n |
∴
a2 |
2 |
a1 |
1 |
∴数列{
an |
n |
∴
an |
n |
∴an=n2;
(3)证明:n≥2时,bn=
2
| ||
an |
2
| ||
n2 |
4 | |
n
|