已知函数f(x)=x4+ax-lnx-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x.(

已知函数f(x)=x4+ax-lnx-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间... 已知函数f(x)=x4+ax-lnx-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值. 展开
 我来答
青木流影R
2014-12-17 · 超过64用户采纳过TA的回答
知道答主
回答量:161
采纳率:100%
帮助的人:113万
展开全部
(Ⅰ)∵f(x)=
x
4
+
a
x
-lnx-
3
2

∴f′(x)=
1
4
-
a
x2
-
1
x

∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=
1
2
x.
∴f′(1)=
1
4
-a-1=-2,
解得:a=
5
4

(Ⅱ)由(Ⅰ)知:f(x)=
x
4
+
5
4x
-lnx-
3
2
,f′(x)=
1
4
-
5
4x2
-
1
x
=
x2?4x?5
4x2
(x>0),
令f′(x)=0,
解得x=5,或x=-1(舍),
∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,
故函数f(x)的单调递增区间为(5,+∞);
单调递减区间为(0,5);
当x=5时,函数取极小值-ln5.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式