求微分方程的通解…要过程

 我来答
xiejings_88
2014-12-26 · TA获得超过9625个赞
知道大有可为答主
回答量:3619
采纳率:66%
帮助的人:1664万
展开全部
设u=y/x du/dx=(y'x-y)/x^2
y'=xdu/dx+y/x=xdu/dx+u................1
dy/dx=-(x^2+2xy-y^2)/(y^2+2xy-x^2)
dy/dx=(u^2-2u-1)/(u^2+2u-1)
将1式代入上式:
xdu/dx+u=(u^2-2u-1)/(u^2+2u-1)
xdu/dx=[(u^2-2u-1)/(u^2+2u-1)-u]
1/xdx=1/[(u^2-2u-1)/(u^2+2u-1)-u]
1/xdx=(u^3+2u^2-u)/(u^3-2u^2-u-u^3-2u^2+u)du
1/xdx=(u^3+2u^2-u)/(-4u^2)du
1/xdx=(u^2+2u-1)/(-4u)du=-1/4(u+2-1/u)du
两边积分:
lnx=-1/4[1/2u^2+2u-lnu]+C
lnx=-1/8u^2-1/2u+1/4 lnu+C
8lnx=-(y/x)^2-1/2(y/x)+1/4ln(y/x)+C
x=1, y=1
0=-1-1/2+0+c
c=3/2
8lnx=-(y/x)^2-1/2(y/x)+1/4ln(y/x)+3/2
追问
能不能写在纸上?
追答
。错了,等等,在改
-1/xdx=(u^2+2u-1)/[(u^2+1)(u+1)]du=[(2u/(u^2+1)-1/(u+1)]du
积分;-lnx=ln[(u^2+1)/(u+1)]+c
1/x=C(u^2+1)/(u+1)
y+x=C(y^2+x^2)
ssitong
高粉答主

2014-12-26 · 每个回答都超有意思的
知道大有可为答主
回答量:1.3万
采纳率:90%
帮助的人:4940万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式