如图,直角三角形ABC中,∠C=90°,AC=1,BC=2,P为斜边AB上一动点.PE⊥BC,PF⊥CA,则线段EF长的最小值
如图,直角三角形ABC中,∠C=90°,AC=1,BC=2,P为斜边AB上一动点.PE⊥BC,PF⊥CA,则线段EF长的最小值为______....
如图,直角三角形ABC中,∠C=90°,AC=1,BC=2,P为斜边AB上一动点.PE⊥BC,PF⊥CA,则线段EF长的最小值为______.
展开
1个回答
展开全部
法一:设EC=y,FC=x.
∵∠C=90°,PE⊥BC,PF⊥CA,
∴四边形EPFC是矩形,
∴EP=FC=x;
∵AC=1,BC=2,
∴BE=2-y,
∵∠C=90°,PE⊥BC,
∴PE∥AC,
∴∠BPE=∠A,
又∵∠B=∠B,
∴
=
,即y=2(1-x);
∵EF2=x2+y2
∴EF2=5(x-
)2+
(0<x<1),
∴当x=
时,EF最小值=
=
.
法二:连接PC,
∵PE⊥BC,PF⊥CA,
∴∠PEC=∠PFC=∠C=90°,
∴四边形ECFP是矩形,
∴EF=PC,
∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=1,BC=2,
∴AB=
,
∴PC的最小值为:
=
.
∴线段EF长的最小值为
.
∵∠C=90°,PE⊥BC,PF⊥CA,
∴四边形EPFC是矩形,
∴EP=FC=x;
∵AC=1,BC=2,
∴BE=2-y,
∵∠C=90°,PE⊥BC,
∴PE∥AC,
∴∠BPE=∠A,
又∵∠B=∠B,
∴
2?y |
2 |
x |
1 |
∵EF2=x2+y2
∴EF2=5(x-
4 |
5 |
4 |
5 |
∴当x=
4 |
5 |
|
2
| ||
5 |
法二:连接PC,
∵PE⊥BC,PF⊥CA,
∴∠PEC=∠PFC=∠C=90°,
∴四边形ECFP是矩形,
∴EF=PC,
∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=1,BC=2,
∴AB=
5 |
∴PC的最小值为:
AC?BC |
AB |
2
| ||
5 |
∴线段EF长的最小值为
2
| ||
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询