(2014?凉山州一模)四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,且ABCD是菱形,AB=BC=2,AA1=4,∠ABC=60°
(2014?凉山州一模)四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,且ABCD是菱形,AB=BC=2,AA1=4,∠ABC=60°.(1)求证:BD⊥平面A...
(2014?凉山州一模)四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,且ABCD是菱形,AB=BC=2,AA1=4,∠ABC=60°.(1)求证:BD⊥平面ACC1A1;(2)若E是棱CC1的是中点,求二面角A1-BD-E的余弦值.
展开
1个回答
展开全部
解答:(1)证明:在四棱柱ABCD-A1B1C1D1中,
∵AA1⊥平面ABCD,∴AA1⊥BD,
∵平行四边形ABCD中,AB=BC,
∴AC⊥BD,
∵AA1∩AC=A,
∴BD⊥平面ACC1A1.
(2)解:连结A1O,EO,A1E,
∵在四棱柱中,底面ABCD是棱形,且E是棱CC1的中点,
∴A1B=A1D,EB=ED,又∵O是BD的中点,
∴A1B=A1D,EB=ED,
又∵O是BD的中点,∴A1O⊥BD,EO⊥BD,
∴∠A1OE是二面角A1-BD-E的平面角,
∵四棱柱中,AA1⊥平面ABCD,AB=BC=2,AA1=4,
∴A1O=
,EO=
,A1E=2
,
∴在△A1OE中,cos∠A1OE=
=
=
,
∴二面角A1-BD-E的平面角的余弦值为
.
∵AA1⊥平面ABCD,∴AA1⊥BD,
∵平行四边形ABCD中,AB=BC,
∴AC⊥BD,
∵AA1∩AC=A,
∴BD⊥平面ACC1A1.
(2)解:连结A1O,EO,A1E,
∵在四棱柱中,底面ABCD是棱形,且E是棱CC1的中点,
∴A1B=A1D,EB=ED,又∵O是BD的中点,
∴A1B=A1D,EB=ED,
又∵O是BD的中点,∴A1O⊥BD,EO⊥BD,
∴∠A1OE是二面角A1-BD-E的平面角,
∵四棱柱中,AA1⊥平面ABCD,AB=BC=2,AA1=4,
∴A1O=
17 |
5 |
2 |
∴在△A1OE中,cos∠A1OE=
A1O2+EO2?A1E2 |
2A1O?EO |
17+5?8 | ||||
2
|
7
| ||
85 |
∴二面角A1-BD-E的平面角的余弦值为
7
| ||
85 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询