如图所示,在xOy平面直角坐标系的第一象限存在匀强电场,场强沿y轴负方向;在第四象限存在匀强磁场,磁场
如图所示,在xOy平面直角坐标系的第一象限存在匀强电场,场强沿y轴负方向;在第四象限存在匀强磁场,磁场方向垂直xOy平面(纸面)向外.一个电荷量为q=0.1c、质量为m=...
如图所示,在xOy平面直角坐标系的第一象限存在匀强电场,场强沿y轴负方向;在第四象限存在匀强磁场,磁场方向垂直xOy平面(纸面)向外.一个电荷量为q=0.1c、质量为m=1×10--5kg的带正电的运动粒子,从y轴上y=h处(h=1m)的P1点以v0=1×10-3m/s的速率,沿x轴正方向水平射入电场;然后,经过x轴上x=2h处的P2点进入磁场,并经过y轴上y′=-2h处的P3点.不计重力.求:(1)电场强度的大小E;(2)粒子到达P2时速度的大小V和方向;(3)磁感应强度的大小B.
展开
1个回答
展开全部
(1)设粒子从P1到P2的时间为t,电场的大小为E,
粒子在电场中做类平抛运动,粒子在电场中的加速度为a,
由牛顿第二定律得:qE=ma,
由运动学公式得:2h=v0t,h=
at2,
解得:E=5×10-11N/C;
(2)粒子到达P2时速度沿x方向的分量仍为v0,以v1表示速度沿y方向分量的大小,
v表示速度的大小,θ表示速度和x轴的夹角,
由速度位移公式可得:v12=2ah,
速度:v=
,tanθ=
,
解得:v1=v0,v=
v0=1.41×10-3m/s,θ=45°;
(3)设磁场的磁感应强度为B,粒子在磁场中做匀速圆周运动,
由牛顿第二定律得:qvB=m
,
此圆与x轴和y轴的交点分别为P2、P3,因为OP2=OP3,θ=45°,
由几何关系可知,连线P2、P3为圆轨道的直径,
解得:r=
h,B=0.1T;
答:(1)电场强度的大小为:5×10-11N/C;
(2)粒子到达P2时速度的大小为1.41×10-3m/s,方向与x轴间的夹角为:45°;
(3)磁感应强度的大小为0.1T.
粒子在电场中做类平抛运动,粒子在电场中的加速度为a,
由牛顿第二定律得:qE=ma,
由运动学公式得:2h=v0t,h=
1 |
2 |
解得:E=5×10-11N/C;
(2)粒子到达P2时速度沿x方向的分量仍为v0,以v1表示速度沿y方向分量的大小,
v表示速度的大小,θ表示速度和x轴的夹角,
由速度位移公式可得:v12=2ah,
速度:v=
|
v1 |
v0 |
解得:v1=v0,v=
2 |
(3)设磁场的磁感应强度为B,粒子在磁场中做匀速圆周运动,
由牛顿第二定律得:qvB=m
v2 |
r |
此圆与x轴和y轴的交点分别为P2、P3,因为OP2=OP3,θ=45°,
由几何关系可知,连线P2、P3为圆轨道的直径,
解得:r=
2 |
答:(1)电场强度的大小为:5×10-11N/C;
(2)粒子到达P2时速度的大小为1.41×10-3m/s,方向与x轴间的夹角为:45°;
(3)磁感应强度的大小为0.1T.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询