(2013?宜宾一模)已知椭圆C的中心在原点,焦点在x轴上,离心率为12,短轴长为43.(Ⅰ)求椭圆C的标准方

(2013?宜宾一模)已知椭圆C的中心在原点,焦点在x轴上,离心率为12,短轴长为43.(Ⅰ)求椭圆C的标准方程;(Ⅱ)P(2,n),Q(2,-n)是椭圆C上两个定点,A... (2013?宜宾一模)已知椭圆C的中心在原点,焦点在x轴上,离心率为12,短轴长为43.(Ⅰ)求椭圆C的标准方程;(Ⅱ)P(2,n),Q(2,-n)是椭圆C上两个定点,A、B是椭圆C上位于直线PQ两侧的动点.①若直线AB的斜率为12,求四边形APBQ面积的最大值;②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值,说明理由. 展开
 我来答
国安09PF
2014-12-17 · TA获得超过346个赞
知道答主
回答量:123
采纳率:0%
帮助的人:130万
展开全部
解:(Ⅰ)设C方程为
x2
a2
+
y2
b2
=1(a>b>0)

由已知b=2
3
,离心率e=
c
a
1
2
a2b2+c2
 …(3分)
得a=4,所以,椭圆C的方程为
x2
16
+
y2
12
=1
…(4分)
(Ⅱ)①由(Ⅰ)可求得点P、Q的坐标为P(2,3).Q(2,-3),则|PQ|=6,
设A(x1,y1),B(x2,y2),直线AB的方程为y=
1
2
x+t
,代入
x2
16
+
y2
12
=1

得x2+tx+t2-12=0 由△>0,解得-4<t<4,由根与系数的关系得
x1+x2=?t
x1x2t2?12

四边形APBQ的面积S=
1
2
×6×|x1?x2|=3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消