已知函数f(x)=ax2-lnx(a为常数).(1)当a=12时,求f(x)的单调递减区间;(2)若a<0,且对任意的
已知函数f(x)=ax2-lnx(a为常数).(1)当a=12时,求f(x)的单调递减区间;(2)若a<0,且对任意的.x∈[1,e],f(x)≥(a-2)x恒成立,求实...
已知函数f(x)=ax2-lnx(a为常数).(1)当a=12时,求f(x)的单调递减区间;(2)若a<0,且对任意的.x∈[1,e],f(x)≥(a-2)x恒成立,求实数a的取值范围.
展开
1个回答
展开全部
(1)对于函数y=
x2-lnx,易得其定义域为{x|x>0},
y′=x-
=
,
令
≤0,
又由x>0,则
≤0?x2-1≤0,且x>0;
解可得0<x≤1,
即函数y=
x2-lnx的单调递减区间为(0,1],
(2)由已知得x∈[1,e]时,f(x)≥(a-2)x恒成立,即x∈[1,e]时,ax2-lnx-(a-2)x≥0恒成立.
即a≥
,
设g(x)=
,g′(x)=
,
当x>1时,g'(x)>0,
∴g(x)在区间(1,+∞)上递增,
∴当x∈[1,e]时,g(x)≤g(e)=
,
故若a<0,且对任意的.x∈[1,e],f(x)≥(a-2)x恒成立,实数a的取值范围为a≥
.
1 |
2 |
y′=x-
1 |
x |
x2?1 |
x |
令
x2?1 |
x |
又由x>0,则
x2?1 |
x |
解可得0<x≤1,
即函数y=
1 |
2 |
(2)由已知得x∈[1,e]时,f(x)≥(a-2)x恒成立,即x∈[1,e]时,ax2-lnx-(a-2)x≥0恒成立.
即a≥
lnx?2x |
x2?x |
设g(x)=
lnx?2x |
x2?x |
(
| ||
(x2?x)2 |
当x>1时,g'(x)>0,
∴g(x)在区间(1,+∞)上递增,
∴当x∈[1,e]时,g(x)≤g(e)=
1?2e |
e2?e |
故若a<0,且对任意的.x∈[1,e],f(x)≥(a-2)x恒成立,实数a的取值范围为a≥
1?2e |
e2?e |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询