高中数学的排列组合问题消序
例如6本不同的书分给甲乙丙分成三堆有一堆分为4本,有一堆分为1本,另一堆分为1本。计算的时候存在消序,请问什么种类的题要进行消序?...
例如6本不同的书分给甲乙丙分成三堆有一堆分为4本,有一堆分为1本,另一堆分为1本。
计算的时候存在消序,请问什么种类的题要进行消序? 展开
计算的时候存在消序,请问什么种类的题要进行消序? 展开
3个回答
2023-06-30
展开全部
在高中数学中,排列组合问题是非常常见的题型,解题时可以采用消序的方法来简化问题。消序是指将题目中的序列进行重新排列,使得问题更容易解决。以下是几种常见的消序方法:1. 利用交换消序法:当问题中存在相同的元素时,可以通过交换这些元素的位置,将它们放在一起。这样做可以简化问题并减少计算量。例如,求由A、B、C、D四个字母组成的三位数的种数,其中每个字母可以重复使用。可以将问题转化为求由D、A、B、C四个字母组成的三位数的种数,因为它们的组合数是相同的。2. 利用分组消序法:当问题中存在相同的元素,且这些元素需要进行分组时,可以将问题分为几个部分,对每个部分进行独立求解,并将答案相乘。这样做可以将复杂的问题简化为若干个较简单的子问题。例如,求由A、A、B、C四个字母组成的三位数的种数,其中每个字母可以重复使用。可以将问题分为两个部分:是由A、B、C三个字母组成的两位数的种数,另是由A、B、C三个字母组成的一位数的种数。然后将两个部分的答案相乘即可得到原问题的答案。3. 利用约束条件消序法:当问题中存在某些约束条件时,可以通过适当的排列和组合来消除这些约束条件。例如,求由A、B、C、D四个字母组成的三位数的种数,其中A必须在B的左边,B必须在C的左边。可以将问题分为两个部分:是由A、B、C、D四个字母组成的两位数的种数,另是由A、B、C三个字母组成的一位数的种数。然后将两个部分的答案相乘即可得到原问题的答案。以上是一些常见的消序方法,在解决排列组合问题时可以根据实际情况选择合适的方法进行消序,以简化问题并提高解题效率。
2015-04-03 · 知道合伙人教育行家
关注
展开全部
网络“1对1”答疑,方便,快捷,可以试试。中小学 教育 网
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询