数学归纳法的解题要点
数学归纳法对解题的形式要求严格,数学归纳法解题过程中,
第一步:验证n取第一个自然数时成立
第二步:假设n=k时成立,然后以验证的条件和假设的条件作为论证的依据进行推导,在接下来的推导过程中不能直接将n=k+1代入假设的原式中去。
最后一步总结表述。
需要强调是数学归纳法的两步都很重要,缺一不可,否则可能得到下面的荒谬证明:
证明1:所有的马都是一种颜色
首先,第一步,这个命题对n=1时成立,即,只有1匹马时,马的颜色只有一种。
第二步,假设这个命题对n成立,即假设任何n匹马都是一种颜色。那么当我们有n+1匹马时,不妨把它们编好号:
1, 2, 3……n, n+1
对其中(1、2……n)这些马,由我们的假设可以得到,它们都是同一种颜色;
对(2、3……n、n+1)这些马,我们也可以得到它们是一种颜色;
由于这两组中都有(2、3、……n)这些马,所以可以得到,这n+1种马都是同一种颜色。
这个证明的错误来于推理的第二步:当n=1时,n+1=2,此时马的编号只有1、2,那么分的两组是(1)和(2)——它们没有交集,所以第二步的推论是错误的。数学归纳法第二步要求n→n+1过程对n=1,2,3……的数都成立,而上面的证明就好比多米诺骨牌的第一块和第二块之间间隔太大,推倒了第一块,但它不会推倒第二块。即使我们知道第二块倒下会推倒第三块等等,但这个过程早已在第一和第二块之间就中断了。
证明2:举例证明下面的定理
——等差数列求和公式
第一步,验证该公式在 n = 1 时成立。即有左边=1,右边= =1,所以这个公式在n = 1时成立。
第二步,需要证明假设n = m 时公式成立,那么可以推导出n = m+1 时公式也成立。步骤如下:
假设n = m 时公式成立,即 (等式1)
然后在等式两边同时分别加上m + 1 得到 (等式2)
这就是n = m+1 时的等式。我们下一步需要根据 等式1证明 等式2 成立。通过因式分解合并,等式2的右边
也就是
这样我们就完成了由n=m成立推导出n=m+1成立的过程,证毕。
结论:对于任意自然数n,公式均成立。
对于以上例2的分析
在这个证明中,归纳的过程如下: 首先证明n=1成立。 然后证明从n=m 成立可以推导出n=m+1 也成立(这里实际应用的是演绎推理法)。 根据上两条从n=1 成立可以推导出n=1+1,也就是n=2 成立。 继续推导,可以知道n=3 成立。 从 n=3 成立可以推导出n=4 也成立…… 不断重复3的推导过程(这就是所谓“归纳”推理的地方)。 我们便可以下结论:对于任意自然数n,公式成立。