如图,不定积分运算
3个回答
展开全部
设 x = 2tanθ,则 dx = 2sec²θ*dθ, θ = arctan(x/2)。cosθ = 1/√[1+tan²θ] = 4/√(x²+4),
sinθ = cosθ*tanθ = 4/√(x²+4) * (x/2) = 2x/√(x²+4)
那么,上面的积分变换为:
=∫(2sec²θ * dθ)/[4tan²θ * √(4tan²θ+4)]
=∫2sec²θ*dθ/[4tan²θ*2secθθ]
=1/4*∫secθ*dθ/tan²θ
=1/4*∫secθ*dθ * (cos²θ/sin²θ)
=1/4*∫cosθ*dθ/(sin²θ)
=1/4*∫d(sinθ)/sin²θ
=1/4*(-1/sinθ) + C
=-1/4 * 1/sinθ + C
=-1/4 * √(x²+4) /(2x) + C
=-√(x²+4) /(8x) + C
sinθ = cosθ*tanθ = 4/√(x²+4) * (x/2) = 2x/√(x²+4)
那么,上面的积分变换为:
=∫(2sec²θ * dθ)/[4tan²θ * √(4tan²θ+4)]
=∫2sec²θ*dθ/[4tan²θ*2secθθ]
=1/4*∫secθ*dθ/tan²θ
=1/4*∫secθ*dθ * (cos²θ/sin²θ)
=1/4*∫cosθ*dθ/(sin²θ)
=1/4*∫d(sinθ)/sin²θ
=1/4*(-1/sinθ) + C
=-1/4 * 1/sinθ + C
=-1/4 * √(x²+4) /(2x) + C
=-√(x²+4) /(8x) + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询