在△ABC中,角A,B,C的对边分别为a,b,c,且3bcosC-3ccosB=a,则tan(B-C)的最大值为
展开全部
设该三角形的外接圆直径为 D,则有:
a/sinA = b/sinB = c/sinC = D
那么:
a =DsinA, b = DsinB, c = DsinC
代入上式,得到:
3DsinBcosC - 3DsinCcosB = DsinA
化简:
3(sinBcosC - cosBsinC) = sinA = sin(B+C) = sinBcosC + cosBsinC
2sinBcosC = 4cosBsinC
sinBcosC = 2cosBsinC
sinB/cosB = 2sinC/cosC
tanB = 2tanC
那么:
tan(B-C) = (tanB - tanC)/(1+tanB*tanC)
= tanC/(1+2tan²C)
= 1/[1/tanC + 2tanC]
因为分母:
1/tanC + 2tanC ≥ 2√[(1/tanC)(2tanC) = 2√2 注:a + b ≥ 2√(ab)
所以,
tan(B-C) ≤ 1/(2√2) = √2/4
即 tan(B-C) 的最大值 为 √2/4
a/sinA = b/sinB = c/sinC = D
那么:
a =DsinA, b = DsinB, c = DsinC
代入上式,得到:
3DsinBcosC - 3DsinCcosB = DsinA
化简:
3(sinBcosC - cosBsinC) = sinA = sin(B+C) = sinBcosC + cosBsinC
2sinBcosC = 4cosBsinC
sinBcosC = 2cosBsinC
sinB/cosB = 2sinC/cosC
tanB = 2tanC
那么:
tan(B-C) = (tanB - tanC)/(1+tanB*tanC)
= tanC/(1+2tan²C)
= 1/[1/tanC + 2tanC]
因为分母:
1/tanC + 2tanC ≥ 2√[(1/tanC)(2tanC) = 2√2 注:a + b ≥ 2√(ab)
所以,
tan(B-C) ≤ 1/(2√2) = √2/4
即 tan(B-C) 的最大值 为 √2/4
展开全部
3bcosC-3ccosB=a
3sinBcosC-3sinCcosB=sinA
3sinBcosC-3sinCcosB)=sin(B+C)
3sinBcosC-3sinCcosB=sinBcosC+sinCcosB
sinBcosC=2sinCcosB
sinB/cosB=2sinC/cosC
tanB=2tanC
tan(B-C)=(tanB-tanC)/(1+tanBtanC)
=(2tanC-tanC)/(1+2tanC*tanC)
=tanC/[1+2(tanC)^2]
=1/[(1/tanC)+(2tanC)]
(1/tanC)+(2tanC)>=2√[(1/tanC)*(2tanC)]=2√2
当且仅当1/tanC=2tanC,tanC=√2/2时有最小值,当取等号时,最小值=2√2
[(1/tanC)+(2tanC)]最小值=2√2
所以,tan(B-C)=1/[(1/tanC)+(2tanC)]最大值=√2/4
3sinBcosC-3sinCcosB=sinA
3sinBcosC-3sinCcosB)=sin(B+C)
3sinBcosC-3sinCcosB=sinBcosC+sinCcosB
sinBcosC=2sinCcosB
sinB/cosB=2sinC/cosC
tanB=2tanC
tan(B-C)=(tanB-tanC)/(1+tanBtanC)
=(2tanC-tanC)/(1+2tanC*tanC)
=tanC/[1+2(tanC)^2]
=1/[(1/tanC)+(2tanC)]
(1/tanC)+(2tanC)>=2√[(1/tanC)*(2tanC)]=2√2
当且仅当1/tanC=2tanC,tanC=√2/2时有最小值,当取等号时,最小值=2√2
[(1/tanC)+(2tanC)]最小值=2√2
所以,tan(B-C)=1/[(1/tanC)+(2tanC)]最大值=√2/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询