
已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).
已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).(1)当a=1/2时,求函数f(x)的最小值;(2)若对于任意x∈[1,+∞),f(x)>0恒成立,试求实数a...
已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).
(1)当a=1/2时,求函数f(x)的最小值;
(2)若对于任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围. 展开
(1)当a=1/2时,求函数f(x)的最小值;
(2)若对于任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围. 展开
展开全部
(1).当a=1/2时,f(x)=x+2+1/2x,因为x∈[1,+∞),所以当x=1时,f(x)有最小值。即f(1)=1+2+1/2=3又1/2
(2).把函数化为f(x)=[(x+1)^2+a-1]/x
则[(x+1)^2+a-1]/x>0
因为x∈[1,+∞).,所以(x+1)^2恒大于4,
则只要a-1>-4即可。
则a>-3
a的取值范围为(-3,+∞)
(2).把函数化为f(x)=[(x+1)^2+a-1]/x
则[(x+1)^2+a-1]/x>0
因为x∈[1,+∞).,所以(x+1)^2恒大于4,
则只要a-1>-4即可。
则a>-3
a的取值范围为(-3,+∞)

2025-05-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
(1)f(x)=x+2+1/(2x),当x=1/(2x)时,有最小值,f(x)最小值为2+根号2
(2)f(x)=x+2+a/x,当a>=0时,条件恒成立
当a<0时,f(x)为单调递增函数,所以在x的取值范围内,当x=1时f(x)有最小值
为满足条件,令f(1)>0,可解得a>-3
从而可得,满足体重条件的a的范围为a>-3
(2)f(x)=x+2+a/x,当a>=0时,条件恒成立
当a<0时,f(x)为单调递增函数,所以在x的取值范围内,当x=1时f(x)有最小值
为满足条件,令f(1)>0,可解得a>-3
从而可得,满足体重条件的a的范围为a>-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a>-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询