反常积分中瑕点有什么意义,怎么判断,怎么计算? 50
反常积分中瑕点意义是如果函数f(x)在点a的一个邻域内无界,那么点a称为函数f(x)的瑕点(也称无界间断点)。
瑕点积分是存在的(即收敛的)。而这个积分是不收敛的瑕积分,所以不存在(不收敛).计算积分值的前提是积分存在。
瑕积分这个概念本身就是为了处理函数在某点无定义的情形,不能仅从函数无定义断言瑕积分发散。比如f(x)=1/根号x,它在0点也没有定义,但它在-1~0和0~1的瑕积分都是收敛的。
扩展资料:
反常积分又叫广义积分,是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又称无界函数的反常积分)。
定积分的积分区间都是有限的,被积函数都是有界的。但在实际应用和理论研究中,还会遇到一些在无限区间上定义的函数或有限区间上的无界函数,对它们也需要考虑类似于定积分的问题。
因此,有必要对定积分的概念加以推广,使之能适用于上述两类函数。这种推广的积分,由于它异于通常的定积分,故称之为广义积分,也称之为反常积分。
反常积分存在时的几何意义:函数与X轴所围面积存在有限制时,即便函数在一点的值无穷,但面积可求。
参考资料来源:百度百科-反常积分
积分是存在的(即收敛的),而这个积分是不收敛的瑕积分,所以不存在(不收敛),计算积分值的前提是积分存在!
“对称”的意思是(-1,0)与(0,1)两部分的积分正负抵消,这固然有道理,但注意这两部分每一部分的积分都是发散的!相当于a-a=0总是对的。
另外,flytian0103的解释是错误的,瑕积分这个概念本身就是为了处理函数在某点无定义的情形,所以不能仅从函数无定义断言瑕积分发散,比如f(x)=1/根号x,它在0点也没有定义,但它在-1~0和0~1的瑕积分都是收敛的!
扩展资料:
反常积分存在时的几何意义:函数与X轴所围面积存在有限制时,即便函数在一点的值无穷,但面积可求。
对于上下限均为无穷,或被积分函数存在多个瑕点,或上述两类的混合,称为混合反常积分。对混合型反常积分,必须拆分多个积分区间,使原积分为无穷区间和无界函数两类单独的反常积分之和。
当x→+∞时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛;当x→a+时,f(x)必为无穷大。且无穷小的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。
参考资料来源:百度百科——反常积分
直观上怎么理解呢?你说的“对称”的意思是(-1,0)与(0,1)两部分的积分正负抵消,这固然有道理,但注意这两部分每一部分的积分都是发散的!相当于a-a=0总是对的,但+∞-+∞等于0吗?不能这样说吧……
另外,flytian0103的解释是错误的.瑕积分这个概念本身就是为了处理函数在某点无定义的情形,所以不能仅从函数无定义断言瑕积分发散.比如f(x)=1/根号x,它在0点也没有定义,但它在-1~0和0~1的瑕积分都是收敛的!
瑕点积分是存在的(即收敛的)。而这个积分是不收敛的瑕积分,所以不存在(不收敛).计算积分值的前提是积分存在。
瑕积分这个概念本身就是为了处理函数在某点无定义的情形,不能仅从函数无定义断言瑕积分发散。比如f(x)=1/根号x,它在0点也没有定义,但它在-1~0和0~1的瑕积分都是收敛的。