数学学习顺序

1、微积分,2、离散数学,3、概率论与数理统计,4、线性代数与空间解析几何。求4门学科学习(自学)顺序?自学计算机软件工程,能说明每门科目的作用及学习顺序的原因最好,谢谢... 1、微积分,2、离散数学,3、概率论与数理统计,4、线性代数与空间解析几何。
求4门学科学习(自学)顺序?

自学计算机软件工程,能说明每门科目的作用及学习顺序的原因最好,谢谢 !!
展开
 我来答
石破天
2015-04-02 · 知道合伙人公共服务行家
石破天
知道合伙人公共服务行家
采纳数:3436 获赞数:17530
一千个读者,有一千个哈姆雷特.

向TA提问 私信TA
展开全部
学习顺序
微积分-->概率统计
线性代数-->离散数学

实际上微积分、线性代数、离散数学都可以直接学
微积分讲到多元微积分时需要一些线性代数里的行列式计算
离散数学的集合论和图论部分需要一些线性代数里的矩阵知识;抽象代数部分最好学过线性代数,线性代数是抽象代数的一个实际例子

解析几何是线性代数的一个实际例子:建立坐标系后,曲线、曲面都能用代数方程表示,结果就把几何问题转化成代数问题

数一: 1、高等数学(函数、极限、连续、一元函数的微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程);2、线性代数;3、概率论与数理统计。
数二: 1、高等数学(函数、极限、连续、一元函数微积分学、微分方程);2、线性代数。
数三: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);2、线性代数;3、概率论与数理统计。
数四: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、常微分方程);2、线性代数;3、概率论。

软件工程一般面向应用软件开发,其实不学数学也可以的
做系统软件、研究软件算法肯定要学非常高深的数学
百度网友1b4cc0f
推荐于2017-09-10 · TA获得超过1万个赞
知道大有可为答主
回答量:4241
采纳率:42%
帮助的人:1915万
展开全部
学习顺序
微积分-->概率统计
线性代数-->离散数学

实际上微积分、线性代数、离散数学都可以直接学
微积分讲到多元微积分时需要一些线性代数里的行列式计算
离散数学的集合论和图论部分需要一些线性代数里的矩阵知识;抽象代数部分最好学过线性代数,线性代数是抽象代数的一个实际例子

解析几何是线性代数的一个实际例子:建立坐标系后,曲线、曲面都能用代数方程表示,结果就把几何问题转化成代数问题

软件工程一般面向应用软件开发,其实不学数学也可以的
做系统软件、研究软件算法肯定要学非常高深的数学
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
XHHISEA02274
推荐于2017-09-27 · TA获得超过8万个赞
知道大有可为答主
回答量:1.4万
采纳率:81%
帮助的人:3489万
展开全部
在大学,所有学院的数学学习顺序都是基本相同的,具体如下:
大一上:微积分(上)
大一下:微积分(下)、线性代数与空间几何解析
大二上:概率论与数理统计、复变分析
大二下:离散数学、随机过程(与概率论有重叠的部分)

实际上微积分、线性代数、离散数学都可以直接学
微积分讲到多元微积分时需要一些线性代数里的行列式计算
离散数学的集合论和图论部分需要一些线性代数里的矩阵知识;抽象代数部分最好学过线性代数,线性代数是抽象代数的一个实际例子

至于概率学等学科,软件学院应该不用学!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
王闻过则喜
2015-04-03 · TA获得超过1.5万个赞
知道大有可为答主
回答量:1551
采纳率:52%
帮助的人:957万
展开全部
理论上,这四门其实可以同时进行,这样不会因为一直看同一科目而觉得烦躁。

在大学中,一般每学期会从这四门中选两门进行教学。大学数学相对较难,四门科目同时学习的话,会有较大的压力,而且难以学的扎实透彻。
所以我建议先学习微积分与线性代数,学完这两门再学离散数学与概率论。
因为在大学数学中,微积分与线性代数难度中等,离散数学相对较难,概率论相对简单,所以这样两两搭配的话算是将学习难度中和了。
从内容上,线性代数比较基础,因为微积分和离散数学中会涉及到线代的相关知识,所以对线代的学习安排应该比其他科目提前一点。
《概率论与数理统计》与另外三门学科基本没有相关性,可以最先学习也可以最后学习。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
侠剑天涯3
2015-04-24 · TA获得超过3.8万个赞
知道大有可为答主
回答量:4770
采纳率:80%
帮助的人:1191万
展开全部
学习顺序
微积分-->概率统计
线性代数-->离散数学

实际上微积分、线性代数、离散数学都可以直接学
微积分讲到多元微积分时需要一些线性代数里的行列式计算
离散数学的集合论和图论部分需要一些线性代数里的矩阵知识;抽象代数部分最好学过线性代数,线性代数是抽象代数的一个实际例子

另外:
数一: 1、高等数学(函数、极限、连续、一元函数的微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程);2、线性代数;3、概率论与数理统计。
数二: 1、高等数学(函数、极限、连续、一元函数微积分学、微分方程);2、线性代数。
数三: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);2、线性代数;3、概率论与数理统计。
数四: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、常微分方程);2、线性代数;3、概率论。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式