微分方程 第四题 过程要有

 我来答
sinerpo
2017-06-26 · TA获得超过1.6万个赞
知道大有可为答主
回答量:5065
采纳率:100%
帮助的人:3285万
展开全部
xy'+y=yln(xy)
令xy=u,则y=u/x.
y'=dy/dx=[x(du/dx)-u]/x²,代入原式得:
[x(du/dx)-u]/x+u/x=(u/x)lnu,化简得du/dx=(u/x)lnu,
分离变量得du/(ulnu)=(1/x)dx;
积分之得∫du/(ulnu)=∫(1/x)dx
即有lnlnu=lnx+lnC=lnCx
故得lnu=Cx,即u=e^(Cx)
即得通解为y=(1/x)e^(Cx)
【检验:对通解的两边取对数:lny=Cx-lnx;取导数:y'/y=C-1/x;故y'=Cy-(y/x);
代入原式:左边=Cxy-y+y=Cxy;右边=y(lnx+Cx-lnx)=Cxy;故左边=右边,答案正确.】
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式