求y=sin(x+y)的二阶导数,详细过程谢谢
展开全部
y= sin(x+y)
y'= ( 1+ y')cos(x+y)
y''=y''.cos(x+y) -(1+y')^2 .sin(x+y)
=y''.cos(x+y) -(1+y').y'
=y''.cos(x+y) -{ 1+ cos(x+y)/(1-cos(x+y) ] } .[cos(x+y)/[1-cos(x+y)]
=y''.cos(x+y) -{ cos(x+y)/[(1-cos(x+y) ]^2 }
[1-cos(x+y) ] y''=-cos(x+y)/[(1-cos(x+y) ]^2
y''=- cos(x+y)/[(1-cos(x+y) ]^3
扩展资料
通过对系数βj(j=0,1,…,k)及γk的选取,可使方法具有比向后差分法更好的刚性稳定性质,且直至4阶方法是A稳定的,直至9阶方法是A(α)稳定的,
k步方法的精度阶为k+2.对于刚性振荡问题,它的效果比向后差分法好,上述计算公式作为隐式方程,常用牛顿迭代法及其变形求解。
展开全部
y= sin(x+y)
y'= ( 1+ y')cos(x+y)
y''=y''.cos(x+y) -(1+y')^2 .sin(x+y)
=y''.cos(x+y) -(1+y').y'
=y''.cos(x+y) -{ 1+ cos(x+y)/(1-cos(x+y) ] } .[cos(x+y)/[1-cos(x+y)]
=y''.cos(x+y) -{ cos(x+y)/[(1-cos(x+y) ]^2 }
[1-cos(x+y) ] y''=-cos(x+y)/[(1-cos(x+y) ]^2
y''=- cos(x+y)/[(1-cos(x+y) ]^3
y'= ( 1+ y')cos(x+y)
y''=y''.cos(x+y) -(1+y')^2 .sin(x+y)
=y''.cos(x+y) -(1+y').y'
=y''.cos(x+y) -{ 1+ cos(x+y)/(1-cos(x+y) ] } .[cos(x+y)/[1-cos(x+y)]
=y''.cos(x+y) -{ cos(x+y)/[(1-cos(x+y) ]^2 }
[1-cos(x+y) ] y''=-cos(x+y)/[(1-cos(x+y) ]^2
y''=- cos(x+y)/[(1-cos(x+y) ]^3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询