x趋向于0,求ln(1+x)/x的极限

x趋向于0,求ln(1+x)/x的极限。为什么lim1/x*ln(1+x)变成了limln(1+x)^1/x?... x趋向于0,求ln(1+x)/x的极限。
为什么lim1/x*ln(1+x)变成了limln(1+x)^1/x?
展开
 我来答
热点那些事儿
高粉答主

2020-11-03 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:200万
展开全部

1

极限的存在准则有夹逼原则和单调有界原则,这个知识课本上有,可以推出两个基本极限。

即x趋向于无穷,lim(1+n分之1)的n次方等于e

这个可以再推算出,当x趋向于0,lim(1+x)的x分之1次方等于e

lim1/x*ln(1+x),利用对数的运算性质lna的b次方=blna,就可以推出原式等于limln(1+x)^1/x

利用刚刚推导出来的,原式等于lne=1

扩展资料:

极限的求法有很多种:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值

2、利用恒等变形消去零因子(针对于0/0型)

3、利用无穷大与无穷小的关系求极限

4、利用无穷小的性质求极限

5、利用等价无穷小替换求极限,可以将原式化简计算

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限

7、利用两个重要极限公式求极限

达小六6677
2019-08-18
知道答主
回答量:1
采纳率:0%
帮助的人:701
展开全部
极限的存在准则有夹逼原则和单调有界原则,这个知识课本上有,可以推出两个基本极限
即x趋向于无穷,lim(1+n分之1)的n次方等于e
这个可以再推算出,当x趋向于0,lim(1+x)的x分之1次方等于e
lim1/x*ln(1+x),利用对数的运算性质lna的b次方=blna,就可以推出原式等于limln(1+x)^1/x
利用刚刚推导出来的,原式等于lne=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
scarlett110870
高粉答主

2019-05-05 · 关注我不会让你失望
知道大有可为答主
回答量:2万
采纳率:71%
帮助的人:4671万
展开全部
利用对数的运算性质得出的,lna的b次方=blna,之后利用第二个重要极限得出极限为lne=1。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式