复变函数解析函数证明问题 5
展开全部
待证命题实际上是解析函数的平均值定理:如果函数f(z)在单连通域D上解析,z0是区域D内的一点,曲线C是区域D内以z0点为圆心的圆周,那么f(z0)等于函数f(z)在曲线C上的平均值,即 f(z0)=1/2π*∫f(z0+re^iΘ)dΘ,其中r是圆周C的半径,积分范围是0到2π 因此这道题的关键在于通过这个调和函数u(x,y)构造出解析函数f(z) 下面给出构造得到的解析函数f(z): 设f(z)=u(x,y)+iv(x,y),其中u,v都是实函数,并且v函数满足: 可以证明v是u的共轭调和函数,而且u、v满足柯西黎曼方程,因此函数f(z)是区域D上的解析函数 (详细过程这里没有给出,可以参考这篇论文:《由调和函数构造解析函数的一种方法》,可以在中国知网查找) 因此根据柯西积分公式 由于C圆周的特殊性,可以令 所以 由实部和虚部对应相等即得到待证命题
追问
能把这题做一下吗
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询