3个回答
2018-12-26 · 知道合伙人教育行家
关注
展开全部
令x=sint
dx=costdt
∫√(1-x^2)/(2x^2-1)dx
=∫cos^2t/(2sin^2t-1)dt
=1/2∫(cos2t+1)/(-cos2t)dt
=-1/2∫dt-1/4∫sec2td(2t)
=-1/2t-1/4ln(sec2t+tan2t)+C
=-1/2arcsinx-1/4ln[1/cos2t+2tant/(1-tan^2t)]+C
=-1/2arcsinx-1/4ln[1/(1-2sin^2t)+2tant/(1-tan^2t)]+C
=-1/2arcsinx-1/4ln{[1+2x√(1-x^2)]/(1-2x^2)}+C
=-1/2arcsinx-1/4ln[1+2x√(1-x^2)]+1/4ln(1-2x^2)+C
注:tant=x/√(1-x^2)
2x/√(1-x^2)/[1-x^2/(1-x^2)]
=[1+2x√(1-x^2)]/(1-2x^2)
dx=costdt
∫√(1-x^2)/(2x^2-1)dx
=∫cos^2t/(2sin^2t-1)dt
=1/2∫(cos2t+1)/(-cos2t)dt
=-1/2∫dt-1/4∫sec2td(2t)
=-1/2t-1/4ln(sec2t+tan2t)+C
=-1/2arcsinx-1/4ln[1/cos2t+2tant/(1-tan^2t)]+C
=-1/2arcsinx-1/4ln[1/(1-2sin^2t)+2tant/(1-tan^2t)]+C
=-1/2arcsinx-1/4ln{[1+2x√(1-x^2)]/(1-2x^2)}+C
=-1/2arcsinx-1/4ln[1+2x√(1-x^2)]+1/4ln(1-2x^2)+C
注:tant=x/√(1-x^2)
2x/√(1-x^2)/[1-x^2/(1-x^2)]
=[1+2x√(1-x^2)]/(1-2x^2)
更多追问追答
追问
?
不要题都没课就胡乱回答嘛
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询