在三角形ABC中,内角A B C对边的边长分别是a b c,已知c=2 C=3分之派
①若三角形ABC的面积等于√3,求a,b②若sinC+sin(B-A)=2sin2A,求三角形ABC的面积。求过程答案,谢谢...
①若三角形ABC的面积等于√3,求a,b②若sinC+sin(B-A)=2sin2A,求三角形ABC的面积。 求过程答案,谢谢
展开
1个回答
展开全部
答:
1)根据余弦公式:c^2=a^2+b^2-2abcosA
故:a^2+b^2-2abcos(π/3)=2^2=4
a^2+b^2-ab=4……(1)
又面积S=absinC/2=√3
absin(π/3)=2√3
ab=4……(2)
由(1)和(2)解得:a=2,b=2
2)sinC+sin(B-A)=2sin2A
sin(π/3)+sin(2π/3-2A)=2sin2A
整理得:sin2A=√3(1+cos2A)/3……(3)
(sin2A)^2+(cos2A)^2=1……(4)
联立(3)和(4)解得:cos2A=1/2
2A=π/3,所以A=30°,B=120°-A=90°
RT△ABC中AB=c=2,角C=60°,所以BC=2/√3
所以面积S=AB*BC/2=2*2/√3/2=2√3/3
1)根据余弦公式:c^2=a^2+b^2-2abcosA
故:a^2+b^2-2abcos(π/3)=2^2=4
a^2+b^2-ab=4……(1)
又面积S=absinC/2=√3
absin(π/3)=2√3
ab=4……(2)
由(1)和(2)解得:a=2,b=2
2)sinC+sin(B-A)=2sin2A
sin(π/3)+sin(2π/3-2A)=2sin2A
整理得:sin2A=√3(1+cos2A)/3……(3)
(sin2A)^2+(cos2A)^2=1……(4)
联立(3)和(4)解得:cos2A=1/2
2A=π/3,所以A=30°,B=120°-A=90°
RT△ABC中AB=c=2,角C=60°,所以BC=2/√3
所以面积S=AB*BC/2=2*2/√3/2=2√3/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询