x'=x(y-z);y'=y(z-x);z'=z(x-y);
1个回答
展开全部
由题知:x/(y-z)+y/(
z-x)+z/(x-y)=0
则分别将等式两边同乘以1/y-z
,1/z-x
,1/x-y
即得到三个等式:x/(y-z)^2+y/(z-x)(y-z)+z/(x-y)(y-z)=0
(1)
x/(y-z)(z-x)+y/(z-x)^2+z/(x-y)(z-x)=0
(2)
x/(y-z)(x-y)+y/(
z-x)(x-y)+z/(x-y)^2=0
(3)
将(1)(2)(3)式相加得:x/(y-z)²+y/(z-x)²+z/(x-y)²
+y/(z-x)(y-z)+z/(x-y)(y-z)+
x/(y-z)(z-x)+z/(x-y)(z-x)+x/(y-z)(x-y)+y/(
z-x)(x-y)=0
经
化简
得:不加粗的可化为y(x-y)+z(z-x)+x(x-y)+z(y-z)+x(z-x)+y(y-z)除以(x-y)*(y-z)*(z-x)
经计算得分母为0,故不加粗的式子为0
因此
加粗的式子x/(y-z)²+y/(z-x)²+z/(x-y)²
=0(得证)
解:设x+y-z/z=x-y+z/y=y+z-x/x=k
有x+y-z=kz
x-y+z=ky
y+z-x=kx
三式相加得x+y+z=k(x+y+z)
k=1
得x+y=(k+1)z
x+z=(k+1)y
y+z=(k+1)x
(x+y)(y+z)(x+z)/xyz=(k+1)^3xyz/xyz=(k+1)^3=8
还漏了一种情况
-1
当x+y+z=0时,则直接可以知道x+y=-z,x+z=-y,y+z=-x,代入要求的式子中,可以求出值为-1。
所以是-1或8
z-x)+z/(x-y)=0
则分别将等式两边同乘以1/y-z
,1/z-x
,1/x-y
即得到三个等式:x/(y-z)^2+y/(z-x)(y-z)+z/(x-y)(y-z)=0
(1)
x/(y-z)(z-x)+y/(z-x)^2+z/(x-y)(z-x)=0
(2)
x/(y-z)(x-y)+y/(
z-x)(x-y)+z/(x-y)^2=0
(3)
将(1)(2)(3)式相加得:x/(y-z)²+y/(z-x)²+z/(x-y)²
+y/(z-x)(y-z)+z/(x-y)(y-z)+
x/(y-z)(z-x)+z/(x-y)(z-x)+x/(y-z)(x-y)+y/(
z-x)(x-y)=0
经
化简
得:不加粗的可化为y(x-y)+z(z-x)+x(x-y)+z(y-z)+x(z-x)+y(y-z)除以(x-y)*(y-z)*(z-x)
经计算得分母为0,故不加粗的式子为0
因此
加粗的式子x/(y-z)²+y/(z-x)²+z/(x-y)²
=0(得证)
解:设x+y-z/z=x-y+z/y=y+z-x/x=k
有x+y-z=kz
x-y+z=ky
y+z-x=kx
三式相加得x+y+z=k(x+y+z)
k=1
得x+y=(k+1)z
x+z=(k+1)y
y+z=(k+1)x
(x+y)(y+z)(x+z)/xyz=(k+1)^3xyz/xyz=(k+1)^3=8
还漏了一种情况
-1
当x+y+z=0时,则直接可以知道x+y=-z,x+z=-y,y+z=-x,代入要求的式子中,可以求出值为-1。
所以是-1或8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询