求P→(Q∧R)的析取范式和主合取范式
1个回答
展开全部
P→(Q∧R)
⇔¬P∨(Q∧R)
变成
合取析取
⇔(¬P∨Q)∧(¬P∨R)
分配律
⇔(¬P∨Q∨(¬R∧R))∧(¬P∨(¬Q∧Q)∨R)
补项
⇔((¬P∨Q∨¬R)∧(¬P∨Q∨R))∧(¬P∨(¬Q∧Q)∨R)
分配律2
⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧(¬P∨(¬Q∧Q)∨R)
结合律
⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧((¬P∨¬Q∨R)∧(¬P∨Q∨R))
分配律2
⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧(¬P∨¬Q∨R)∧(¬P∨Q∨R)
结合律
⇔(¬P∨Q∨¬R)∧(¬P∨¬Q∨R)∧(¬P∨Q∨R)
等幂律
得到主合取范式,再检查遗漏的极大项
⇔M₄∧M₅∧M₆⇔∏(4,5,6)
⇔¬∏(0,1,2,3,7)⇔∑(0,1,2,3,7)⇔m₀∨m₁∨m₂∨m₃∨m₇
⇔¬(P∨Q∨R)∨¬(P∨Q∨¬R)∨¬(P∨¬Q∨R)∨¬(P∨¬Q∨¬R)∨¬(¬P∨¬Q∨¬R)
德摩根定律
⇔(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧Q∧R)
德摩根定律
得到主析取范式
⇔¬P∨(Q∧R)
变成
合取析取
⇔(¬P∨Q)∧(¬P∨R)
分配律
⇔(¬P∨Q∨(¬R∧R))∧(¬P∨(¬Q∧Q)∨R)
补项
⇔((¬P∨Q∨¬R)∧(¬P∨Q∨R))∧(¬P∨(¬Q∧Q)∨R)
分配律2
⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧(¬P∨(¬Q∧Q)∨R)
结合律
⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧((¬P∨¬Q∨R)∧(¬P∨Q∨R))
分配律2
⇔(¬P∨Q∨¬R)∧(¬P∨Q∨R)∧(¬P∨¬Q∨R)∧(¬P∨Q∨R)
结合律
⇔(¬P∨Q∨¬R)∧(¬P∨¬Q∨R)∧(¬P∨Q∨R)
等幂律
得到主合取范式,再检查遗漏的极大项
⇔M₄∧M₅∧M₆⇔∏(4,5,6)
⇔¬∏(0,1,2,3,7)⇔∑(0,1,2,3,7)⇔m₀∨m₁∨m₂∨m₃∨m₇
⇔¬(P∨Q∨R)∨¬(P∨Q∨¬R)∨¬(P∨¬Q∨R)∨¬(P∨¬Q∨¬R)∨¬(¬P∨¬Q∨¬R)
德摩根定律
⇔(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧Q∧R)
德摩根定律
得到主析取范式
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询