数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n Sn(n=1...

数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/nSn(n=1,2,3,...)证明:(1)数列{Sn/n}是等比数列.(2)Sn+1=4*an... 数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n Sn(n=1,2,3,...) 证明:(1)数列{Sn/n}是等比数列.(2)Sn+1=4*an 展开
 我来答
萨洮诸葛春华
2019-10-14 · TA获得超过3753个赞
知道大有可为答主
回答量:3088
采纳率:28%
帮助的人:169万
展开全部
第一问:
假设数列{Sn/n}是等比数列,则有:
Sn/n=(s1/1)*q^(n-1)
=a1*q^(n-1)
=q^(n-1)
代入an+1=n+2Sn/n可得到:
an+1=n+nq^(n-1).(1)
只要求的q为定值,第一问就得到证明.
由等式an+1=n+2Sn/n,可到a2=3,a3=6...(2)
由(1)可得到a3=2+2q.(3)
(2)、(3)可求得q=2,为定值得证.
第二问:
从第一问中,我们得到:sn=n*2^(n-1);
则有:sn-1=(n-1)*2^(n-2)
sn+1=(n+1)*2^n.(4)
根据数列公式:an=sn-sn-1=n*2^(n-1)-(n-1)*2^(n-2)
=2^(n-2)*[n*2-(n-1)]
=2^(n-2)*(n+1)
所以要证明的等式右边=4an=2^n*(n+1)=(4)=左边,得证.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式