已知椭圆的一个焦点为f(1,0),且椭圆过p

[急死了!]已知中心在原点,其中一个焦点为F(-1,0)的椭圆,经过P(根号2,-根号6/2),椭圆已知中心在原点,其中一个焦点为F(-1,0)的椭圆,经过P(根号2,-... [急死了!]已知中心在原点,其中一个焦点为F(-1,0)的椭圆,经过P(根号2,-根号6/2),椭圆
已知中心在原点,其中一个焦点为F(-1,0)的椭圆,经过P(根号2,-根号6/2),椭圆
的右顶点为A,经过F的直线与椭圆交于B,C两点.
(1)求椭圆的方程
(2)若△ABC的面积为(18根号2)/7,求直线的方程.
展开
 我来答
弭晨威钊
2020-03-04 · TA获得超过1109个赞
知道小有建树答主
回答量:1864
采纳率:100%
帮助的人:8.8万
展开全部
º¹²³
(1)设椭圆方程为(x²/a²)+(y²/b²)=1,(a>b>0)
则c²=a²-b²=(-1)²——(1);
代入点P(√2,-√6/2)得(2/a²)+((3/2)/b²)=1——(2);
联立(1)、(2)解得a²=4、b²=3;
即椭圆方程为(x²/4)+(y²/3)=1.
(2)由(1)可知椭圆右顶点坐标为A(2,0);
很容易验证:当直线垂直x轴时,S△ABC=9/2≠18√2/7,
所以该直线与x轴不垂直,其斜率存在.
设过左焦点F(-1,0)的直线斜率为k,则其方程为y=k(x+1),k≠0;
联立椭圆方程,消去x,可得(4k²+3)y²-6ky-9k²=0;
则易知S△ABC=|y1-y2|×|AF|/2=3√((y1+y2)²-4y1y2)/2=18√2/7
则3√((6k/(4k²+3))²-4×(-9k²)/(4k²+3))/2=18√2/7;
解得k²=9/17,则k=±3√17/17,则直线方程为:
y=±(3√17/17)(x+1).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式