一个导数题

arcsiny=e^(x+y),y是x的函数,求y'... arcsiny=e^(x+y),y是x的函数,求y' 展开
 我来答
郁熊熊03n
2020-02-17 · TA获得超过1229个赞
知道小有建树答主
回答量:1476
采纳率:100%
帮助的人:6.7万
展开全部
这是一道隐函数的求导题
为了便于分辨可设y=f(x)
所以arcsinf(x)-e^(x+y)=0
关于x求导
f'(x)/√(1-y^2)-e^(x+y)(1+f'(x))=0
化简上式得f‘(x)[1/√(1-y^2)-e^(x+y)]=e^(x+y)
所以y'=f’(x)=[e^(x+y)√(1-y^2)]/[1-e^(x+y)√(1-y^2)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式