x/z=㏑z/y的一阶,二阶偏导数
2个回答
展开全部
改写成
xy = z㏑z,
对方程两边求微分,得
ydx+xdy = (㏑z+1)dz
整理,得
dz = [y/(㏑z+1)]dx+[x/(㏑z+1)]dy,
可得
Dz/Dx = y/(㏑z+1),Dz/Dy = x/(㏑z+1).
于是
D²z/Dx² = (D/Dx)[y/(㏑z+1)]
= y[-(1/z)*(Dz/Dx)]/(㏑z+1)²
= y{-(1/z)*[y/(㏑z+1)]}/(㏑z+1)²
= -y²/[z(㏑z+1)³],
xy = z㏑z,
对方程两边求微分,得
ydx+xdy = (㏑z+1)dz
整理,得
dz = [y/(㏑z+1)]dx+[x/(㏑z+1)]dy,
可得
Dz/Dx = y/(㏑z+1),Dz/Dy = x/(㏑z+1).
于是
D²z/Dx² = (D/Dx)[y/(㏑z+1)]
= y[-(1/z)*(Dz/Dx)]/(㏑z+1)²
= y{-(1/z)*[y/(㏑z+1)]}/(㏑z+1)²
= -y²/[z(㏑z+1)³],
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询