求幂级数∑(n+1)/n(x^n)在其收敛域上的和函数

 我来答
新科技17
2022-06-12 · TA获得超过5911个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.4万
展开全部
显然由比值审敛法易知其收敛域为(-1,1)
∑(n+1)/n(x^n)=∑(1+1/n)*x^n=∑x^n+∑(1/n)*x^n=x/(1-x)+∑(1/n)*x^n
令f(x)=∑(1/n)*x^n
则f′(x)=∑x^(n-1)=1/(1-x)
所以f(x)=∫(上x,下0)1/(1-x) dx =-ln(1-x)
所以
∑(n+1)/n(x^n)=x/(1-x)-ln(1-x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式