将分式(x²+3x)/(x+1)(x²+1)化为部分分式)
4个回答
展开全部
(x²+3x)/[(x+1)(x²+1)] = a/(x+1) + (bx+c)/(x^2+1)
= [(x+1)(bx+c)+a(x^2+1)]/[(x+1)(x²+1)]
b+a = 1, b+c = 3, c+a = 0,
a = -1, b = 2, c = 1,
(x²+3x)/[(x+1)(x²+1)] = -1/(x+1) + (2x+1)/(x^2+1)
= [(x+1)(bx+c)+a(x^2+1)]/[(x+1)(x²+1)]
b+a = 1, b+c = 3, c+a = 0,
a = -1, b = 2, c = 1,
(x²+3x)/[(x+1)(x²+1)] = -1/(x+1) + (2x+1)/(x^2+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设(x²+3x)/[(x+1)(x²+1)]=a/(x+1)+(bx+c)/(x^2+1),
去分母得x^2+3x=a(x^2+1)+(bx+c)(x+1)
=(a+b)x^2+(b+c)x+a+c,
比较系数得a+b=1,b+c=3,a+c=0,
解得a=-1,b=2,c=1.
所以(x²+3x)/[(x+1)(x²+1)]=-1/(x+1)+(2x+1)/(x^2+1)
去分母得x^2+3x=a(x^2+1)+(bx+c)(x+1)
=(a+b)x^2+(b+c)x+a+c,
比较系数得a+b=1,b+c=3,a+c=0,
解得a=-1,b=2,c=1.
所以(x²+3x)/[(x+1)(x²+1)]=-1/(x+1)+(2x+1)/(x^2+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:设原式=(x²+1+3x-1)/(x+1)(x²+1)
=(x²+1)/(x+1)(x²+1)+(3x-1)/(x+1)(x²+1)
=1/(x+1)+(3x+3-4)/(x+1)(x²+1)
=1/(x+1)+3/(x²+1)-4/(x+1)(x²+1)
=(x²+1)/(x+1)(x²+1)+(3x-1)/(x+1)(x²+1)
=1/(x+1)+(3x+3-4)/(x+1)(x²+1)
=1/(x+1)+3/(x²+1)-4/(x+1)(x²+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2022-12-14 · 知道合伙人教育行家
关注
展开全部
设(x²+3x)/[(x+1)(x²+1)]=a/(x+1)+(bx+c)/(x²+1)
=[a(x²+1)+(x+1)(bx+c)]/[(x+1)(x²+1)](通分)
x²+3x=a(x²+1)+(x+1)(bx+c)(只看分子)
令x=-1(别管原式分母=0,上面一行是整式,随意令,越简单越好),-2=2a,a=-1
x²+3x=-(x²+1)+(x+1)(bx+c)
令x=0,0=-1+c,c=1
x²+3x=-(x²+1)+(x+1)(bx+1),
令x=1,4=-2+2(b+1),b=2
(x²+3x)/[(x+1)(x²+1)]=(2x+1)/(x²+1)-1/(x+1)
另一种方法:把第3行右边乘出来合并同类项,与左边比较系数可得a、b、c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询