如何求碰撞中的动量守恒和动能守恒?
动量守恒、动能(机械能)守恒的两个方程(应是弹性正碰撞的式子)为:
mA* VA0=mA * VA+mB * VB。
(mA* VA0^2 / 2)=(mA * VA^2 / 2)+(mB * VB^2 / 2)。
即:mA* VA0=mA * VA+mB * VB
mA* VA0^2 =mA * VA^2 +mB * VB^2
将方程1变形,得 mA* (VA0- VA)=mB * VB。
将方程2变形,得 mA* (VA0^2- VA^2)=mB * VB^2。
由于 VA0≠VA ,所以把以上二式相除,得。
VA0+ VA= VB
通过以上处理,使方程变为一次函数。
再由方程1与方程3联立,容易求得。
VA=(mA-mB)* VA0 /(mA+mB)。
VB=2* mA* VA0 /(mA+mB)。
注:以上的 VA0、VA、VB是包含方向(正负)的。
扩展资料:
(1)p=p′ ,即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量;
(2)Δp=0 ,即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为: m₁v₁+m₂v₂=m₁v₁′+m₂v₂′ (等式两边均为矢量和);
(3)Δp₁=-Δp₂ . 即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动 量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变。
参考资料来源:百度百科-动量定理