
已知a^(2/3)+b^(2/3)=4,x=a+3a^(1/3)·b^(2/3)
y=b+3a^(2/3)·b^(1/3),求证:(x+y)^(2/3)+(x-y)^(2/3)为定值...
y=b+3a^(2/3)·b^(1/3),求证:(x+y)^(2/3)+(x-y)^(2/3)为定值
展开
1个回答
展开全部
设a=8sinθ^3,b=8cosθ^3
代入,得x=a+3a^(1/3)·b^(2/3)=8sinθ^3+24sinθcosθ^2
y=8cosθ^3+24sinθ^2cosθ
则x+y
=8sinθ^3+24sinθcosθ^2+8cosθ^3+24sinθ^2cosθ
=8sinθ(sinθ^2+3cosθ^2)+8cosθ(cosθ^2+3sinθ^2)
=8sinθ(1+2cosθ^2)+8cosθ(1+2sinθ^2)
=8(cosθ+sinθ)+16sinθcosθ(cosθ+sinθ)=8(1+2sinθcosθ)(sinθ+cosθ)
=8(sinθ^2+2sinθcosθ+cosθ^2)(sinθ+cosθ)=8(sinθ+cosθ)^3
同理,x-y=8(sinθ-cosθ)^3
则(x+y)^(2/3)+(x-y)^(2/3)=4(sinθ+cosθ)^2+4(sinθ-cosθ)^2
=4*2(sinθ^2+cosθ^2)=8为定值
代入,得x=a+3a^(1/3)·b^(2/3)=8sinθ^3+24sinθcosθ^2
y=8cosθ^3+24sinθ^2cosθ
则x+y
=8sinθ^3+24sinθcosθ^2+8cosθ^3+24sinθ^2cosθ
=8sinθ(sinθ^2+3cosθ^2)+8cosθ(cosθ^2+3sinθ^2)
=8sinθ(1+2cosθ^2)+8cosθ(1+2sinθ^2)
=8(cosθ+sinθ)+16sinθcosθ(cosθ+sinθ)=8(1+2sinθcosθ)(sinθ+cosθ)
=8(sinθ^2+2sinθcosθ+cosθ^2)(sinθ+cosθ)=8(sinθ+cosθ)^3
同理,x-y=8(sinθ-cosθ)^3
则(x+y)^(2/3)+(x-y)^(2/3)=4(sinθ+cosθ)^2+4(sinθ-cosθ)^2
=4*2(sinθ^2+cosθ^2)=8为定值
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询