如何理解图像傅里叶变换的频谱图?

 我来答
啷个理当a
2023-06-09 · 超过27用户采纳过TA的回答
知道答主
回答量:1817
采纳率:100%
帮助的人:36万
展开全部

对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。

傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别。

应用

尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅里叶变换具有非常好的性质,使得它如此的好用和有用。

让·巴普蒂斯·约瑟夫·傅里叶(Baron Jean Baptiste Joseph Fourier,1768年3月21日-1830年5月16日),法国欧塞尔人,著名数学家、物理学家。

人物生平:

傅里叶生于法国中部欧塞尔(Auxerre)一个裁缝家庭,9岁时沦为孤儿,被当地一主教收养。1780年起就读于地方军校,1795年任巴黎综合工科大学助教,1798年随拿破仑军队远征埃及,受到拿破仑器重,回国后于1801年被任命为伊泽尔省格伦诺布尔地方长官 。

绿知洲
2024-11-13 广告
噪声频谱分析软件是我们上海绿知洲信息科技有限公司开发的一款专业工具。该软件能够对环境噪声进行精细的频谱分析,帮助用户深入了解噪声的来源和特性。通过直观的图形界面,用户可以轻松查看噪声在不同频率上的分布情况,从而更有效地进行噪声控制与管理。此... 点击进入详情页
本回答由绿知洲提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式