正比例函数和一次函数的关系
正比例函数和一次函数的关系:
一次函数包含正比例函数,正比例函数是一个特殊的一次函数。
正比例函数是Jack louny于1911年提出的一种数学术语,主要适用用于函数。正比例函数实质上是一次函数。
定义:
一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数,它是一次函数的一种特殊形式。
即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,即所谓“y轴上的截距”为零,则叫做正比例函数。
关系式:
一般地,形如y=kx(k是常数,k≠0)的图像是一条经过原点的直线,我们称它为直线y=kx。
正比例函数的关系式表示为:y=kx(k为比例系数)。
当k>0时(一、三象限),k的绝对值越大,图像与y轴的距离越近;函数值y随着自变量x的增大而增大;
当k<0时(二四象限),k的绝对值越小,图像与y轴的距离越远。自变量x的值增大时,y的值则逐渐减小。
一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数(direct proportion function)。
一次函数及其图象是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。
一次函数的图像是一条直线。一次函数有三种表示方法,如下:
1、解析式法
用含自变量x的式子表示函数的方法叫做解析式法。
2、列表法
把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。
3、图像法
用图象来表示函数关系的方法叫做图像法。