展开全部
很简单
解:根据正弦定理
由2R[(sinA)²-(sinC)²]=(√2*a- b)*sinB
得到 a²-c²=√2ab-b²
根据余弦定理
cosC=(a²+b²-c²)/2ab=√2/2
故 角C=45度
所以 S=(1/2)absinC=2R²sinAsinBsinC
=√2R²sinAsinB
根据两角正弦积化和的公式
S=√2R²sinAsinB=(√2R²/2)[cos(A-B)-cos(A+B)]
=(√2R²/2)[cos(A-B)+cosC]
=(√2R²/2)[cos(A-B)+√2/2]
≤(√2R²/2)[1+√2/2]=[(√2+1)R²]/2
所以当A=B的时候
三角形ABC的面积的最大值是[(√2+1)R²]/2
解:根据正弦定理
由2R[(sinA)²-(sinC)²]=(√2*a- b)*sinB
得到 a²-c²=√2ab-b²
根据余弦定理
cosC=(a²+b²-c²)/2ab=√2/2
故 角C=45度
所以 S=(1/2)absinC=2R²sinAsinBsinC
=√2R²sinAsinB
根据两角正弦积化和的公式
S=√2R²sinAsinB=(√2R²/2)[cos(A-B)-cos(A+B)]
=(√2R²/2)[cos(A-B)+cosC]
=(√2R²/2)[cos(A-B)+√2/2]
≤(√2R²/2)[1+√2/2]=[(√2+1)R²]/2
所以当A=B的时候
三角形ABC的面积的最大值是[(√2+1)R²]/2
展开全部
a/sinA=b/sinB=c/sinC=2R
2R(sin² A-sin² C)=(根号2*a-b)*sinB
a^2-c^2=根号ab-b^2
a^2+b^2-c^2=根号ab
利用余弦,cosC=根号2/2
利用基本不等式
a=b的时候,S最大
a=b代入a^2+b^2-c^2=根号ab
2a^2-根号2a^2=c^2
2-根号2=c^2/a^2
2-根号2=sin^2C/sin^2A
sin^2A=(2+根号2)/4
S=a^2sinC/2=(根号2+1)R^2/2
2R(sin² A-sin² C)=(根号2*a-b)*sinB
a^2-c^2=根号ab-b^2
a^2+b^2-c^2=根号ab
利用余弦,cosC=根号2/2
利用基本不等式
a=b的时候,S最大
a=b代入a^2+b^2-c^2=根号ab
2a^2-根号2a^2=c^2
2-根号2=c^2/a^2
2-根号2=sin^2C/sin^2A
sin^2A=(2+根号2)/4
S=a^2sinC/2=(根号2+1)R^2/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询