如图,在平面直角坐标系中,直线y=-x-1分别交别交x轴.y轴于点a点b,交双曲线y=k/x
在平面直角坐标系中,直线y=-x-1分别交别交x轴.y轴于点a点b,交双曲线y=k/x(k不等于0)于点c(3,n),抛物线y=ax的平方+3/2x+c(a不等于0)过b...
在平面直角坐标系中,直线y=-x-1分别交别交x轴.y轴于点a点b,交双曲线y=k/x
(k不等于0)于点c(3,n),抛物线y=ax的平方+3/2x+c(a不等于0 )过b点,且与该双曲线交于点D,点D的纵坐标为-3(1)求双曲线于抛物线的解析式(2)求若点P为该抛物线上一点,点Q为该双曲线上一点,且PQ两点的纵坐标为-2,求PQ的长(3)若点M沿直线从点A运动到点C,再沿双曲线从点C运动到点D,过点M做MN垂直于x轴,交抛物线于点N,设该线段的长度为d,点M的横坐标为m,直接写出d的最大值,以及d随m的增大而减小时m的取值范围 展开
(k不等于0)于点c(3,n),抛物线y=ax的平方+3/2x+c(a不等于0 )过b点,且与该双曲线交于点D,点D的纵坐标为-3(1)求双曲线于抛物线的解析式(2)求若点P为该抛物线上一点,点Q为该双曲线上一点,且PQ两点的纵坐标为-2,求PQ的长(3)若点M沿直线从点A运动到点C,再沿双曲线从点C运动到点D,过点M做MN垂直于x轴,交抛物线于点N,设该线段的长度为d,点M的横坐标为m,直接写出d的最大值,以及d随m的增大而减小时m的取值范围 展开
1个回答
展开全部
(1)
由已知直线可知A(-1,0),B(0,-1);
因为点C在直线y=-x-1上,将C点横坐标值3代入,得C点纵坐标值为-4,故C点坐标(3.-4)
将点C坐标代入双曲线y=k/x,可求K值=-12
则双曲线解析式:y=-12/x
抛物线分别过B,D两点,B点坐标已知,D点坐标可通过双曲线方程求得,即-3=-12/x,解得X=4
由D点坐标(4,-3)
因B,D两点在抛物线上,先将B代入,得c=-1,再将D点代入:求得a=-1/2
则抛物线线解析式:y=-1/2x^2+3/2x-1
(2)
将P(x,-2)代入抛物线,求得X1=(3+√17)/2,X2=(3-√17)/2
将Q(x,-2)代入双曲线,求得X=6
则P1Q=6-(3+√17)/2,P2Q=6-(3-√17)/2
(3)
最大值即为当M运动到C点时,d=4
当M在双曲线上由C向D运动时,d随m的增大而减小,m取值范围为3<m<4
总图如下:
由已知直线可知A(-1,0),B(0,-1);
因为点C在直线y=-x-1上,将C点横坐标值3代入,得C点纵坐标值为-4,故C点坐标(3.-4)
将点C坐标代入双曲线y=k/x,可求K值=-12
则双曲线解析式:y=-12/x
抛物线分别过B,D两点,B点坐标已知,D点坐标可通过双曲线方程求得,即-3=-12/x,解得X=4
由D点坐标(4,-3)
因B,D两点在抛物线上,先将B代入,得c=-1,再将D点代入:求得a=-1/2
则抛物线线解析式:y=-1/2x^2+3/2x-1
(2)
将P(x,-2)代入抛物线,求得X1=(3+√17)/2,X2=(3-√17)/2
将Q(x,-2)代入双曲线,求得X=6
则P1Q=6-(3+√17)/2,P2Q=6-(3-√17)/2
(3)
最大值即为当M运动到C点时,d=4
当M在双曲线上由C向D运动时,d随m的增大而减小,m取值范围为3<m<4
总图如下:
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询