设集合A={(x,y)|y=2x-1,},B={(x,y)(y=ax^2-ax+a}
设集合A={(x,y)|y=2x-1,x属于正整数},B={(x,y)|y=ax^2-ax+a,x属于正整数},是否存在非零整数a,使A∩B≠空集,证明你的结论。错了错了...
设集合A={(x,y)|y=2x-1,x属于正整数},B={(x,y)|y=ax^2-ax+a,x属于正整数},是否存在非零整数a,使A∩B≠空集 ,证明你的结论。
错了错了,请看下面的题,上面的题打错了
设集合A={(x,y)|y=2x-1,x属于正整数},B={(x,y)|y=ax^2-2ax+a,x属于正整数},是否存在非零整数a,使A∩B≠空集 ,证明你的结论。 展开
错了错了,请看下面的题,上面的题打错了
设集合A={(x,y)|y=2x-1,x属于正整数},B={(x,y)|y=ax^2-2ax+a,x属于正整数},是否存在非零整数a,使A∩B≠空集 ,证明你的结论。 展开
1个回答
展开全部
答:
A={(x,y)|y=2x-1,x为正整数}
所以:戚拦y是含轮正奇数
B={(x,y)|y=ax^2-ax+a,x为正整数}
y=a(x^2-x+1)=2x-1
ax^2-(a+2)x+a+1=0
判别式=(a+2)^2-4a(a+1)
=a^2+4a+4-4a^2-4a
=-3a^2+4>=0
a^2<=4/3
a为高老胡非0整数,则a=1或者a=-1
当a=-1时,y=a(x^2-x+1)=-(x^2-x+1)<0,不符合
当a=1时,y=a(x^2-x+1)=x^2-x+1
当x=1时,y=x^2-x+1=1-1+1=1;y=2x-1=2-1=1
所以:存在a=1使得A∩B≠空集
A={(x,y)|y=2x-1,x为正整数}
所以:戚拦y是含轮正奇数
B={(x,y)|y=ax^2-ax+a,x为正整数}
y=a(x^2-x+1)=2x-1
ax^2-(a+2)x+a+1=0
判别式=(a+2)^2-4a(a+1)
=a^2+4a+4-4a^2-4a
=-3a^2+4>=0
a^2<=4/3
a为高老胡非0整数,则a=1或者a=-1
当a=-1时,y=a(x^2-x+1)=-(x^2-x+1)<0,不符合
当a=1时,y=a(x^2-x+1)=x^2-x+1
当x=1时,y=x^2-x+1=1-1+1=1;y=2x-1=2-1=1
所以:存在a=1使得A∩B≠空集
追问
是ax^2-2ax+a,不是ax^2-ax+a,开始打错了,抱歉
追答
A={(x,y)|y=2x-1,x为正整数}
所以:y是正奇数
B={(x,y)|y=ax^2-2ax+a,x为正整数}
y=a(x^2-2x+1)=a(x-1)^2=2x-1
ax^2-(2a+2)x+a+1=0
判别式=(2a+2)^2-4a(a+1)
=4a^2+8a+4-4a^2-4a
=4a+4>=0
a>=-1
a为非0整数,则a=-1或者正整数
当a=-1时,y=a(x^2-2x+1)=-(x^2-2x+1)=1,不符合
根据求根公式:
x=[2a+2±√(4a+4)]/(2a)
=[a+1±√(a+1)]/a
x和a为正整数
则a+1是完全平方数,a=3、8、15....
当a=3时,x=(3+1±√4)/3=(4±2)/3
所以:
a=3,x=2时,存在y=3,公共点(2,3)
所以:存在a=1使得A∩B≠空集
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询