求微分方程y"-y'-2y=4e∧2x的通解

很着急啊求助啊啊啊... 很着急啊 求助啊啊啊 展开
wjl371116
2014-09-14 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67434

向TA提问 私信TA
展开全部
求微分方程y"-y'-2y=4e^(2x)的通解
解:先求齐次方程y''-y'-2y=0的通解:
其特征方程r²-r+2=(r-2)(r+1)=0,有相异二实根:r₁=-1;r₂=2;
因此其通解为y=C₁e^(-x)+C₂e^(2x);
下面再求一特解y*:
设y*=axe^(2x);y*'=ae^(2x)+2axe^(2x)=(a+2ax)e^(2x);
y*''=2ae^(2x)+2(a+2x)e^(2x)=(4a+4x)e^(2x);
代入原式得(4a+4x-a-2ax-2ax)e^(2x)=3ae^(2x)=4e^(2x)
故得a=4/3;于是得特解为y*=(4/3)xe^(2x)
于是得原方程的通解为y=C₁e^(-x)+C₂e^(2x)+(4/3)xe^(2x).
低调侃大山
2014-09-14 · 家事,国事,天下事,关注所有事。
低调侃大山
采纳数:67731 获赞数:374602

向TA提问 私信TA
展开全部
1. 齐次通解Y
特征方程r²-r-2=0
(r+1)(r-2)=0
r1=-1,r2=2
Y=C1e^(-x)+C2e^2x
2. 求出1个特解y*
因为λ=2,是一重根
所以
设特解形式为y*=axe^2x
代入解出a即可,自己做
3.通解
y=Y+y*
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式