已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行

已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行,则函数f(x)的单调减区间为()A.(-∞,0... 已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行,则函数f(x)的单调减区间为(  )A.(-∞,0)B.(0,2)C.(2,+∞)D.(-∞,+∞) 展开
 我来答
诺哥哥_亡
推荐于2016-01-29 · 超过53用户采纳过TA的回答
知道答主
回答量:173
采纳率:100%
帮助的人:124万
展开全部
f′(x)=3ax2+2bx,因为函数在x=2时有极值,所以f′(2)=12a+4b=0即3a+b=0①;
又直线3x+y=0的斜率为-3,则切线的斜率k=f′(1)=3a+2b=-3②,
联立①②解得a=1,b=-3,
令f′(x)=3x2-6x<0即3x(x-2)<0,
解得0<x<2.
故选B
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式