已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.(
已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.()A.29B.-3或29C.-3D.26...
已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.( )A.29B.-3或29C.-3D.26
展开
1个回答
展开全部
设方程x2+ax+b=0的两个根为α,β,
∵方程有整数根,
设其中α,β为整数,且α≤β,
则方程x2+cx+a=0的两根为α+1,β+1,
∴α+β=-a,(α+1)(β+1)=a,
两式相加,得αβ+2α+2β+1=0,
即(α+2)(β+2)=3,
∴
或
,
解得
或
,
又∵a=-(α+β)=-[(-1)+1]=0,b=αβ=-1×1=-1,c=-[(α+1)+(β+1)]=-[(-1+1)+(1+1)]=-2,
或a=-(α+β)=-[(-5)+(-3)]=8,b=αβ=(-5)×(-3)=15,c=-[(α+1)+(β+1)]=-[(-5+1)+(-3+1)]=6,
∴a=0,b=-1,c=-2或者a=8,b=15,c=6,
∴a+b+c=0+(-1)+(-2)=-3或a+b+c=8+15+6=29,
故a+b+c=-3或29,
故选:B..
∵方程有整数根,
设其中α,β为整数,且α≤β,
则方程x2+cx+a=0的两根为α+1,β+1,
∴α+β=-a,(α+1)(β+1)=a,
两式相加,得αβ+2α+2β+1=0,
即(α+2)(β+2)=3,
∴
|
|
解得
|
|
又∵a=-(α+β)=-[(-1)+1]=0,b=αβ=-1×1=-1,c=-[(α+1)+(β+1)]=-[(-1+1)+(1+1)]=-2,
或a=-(α+β)=-[(-5)+(-3)]=8,b=αβ=(-5)×(-3)=15,c=-[(α+1)+(β+1)]=-[(-5+1)+(-3+1)]=6,
∴a=0,b=-1,c=-2或者a=8,b=15,c=6,
∴a+b+c=0+(-1)+(-2)=-3或a+b+c=8+15+6=29,
故a+b+c=-3或29,
故选:B..
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询