已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)当a=-2时,求函数f(x)的解析

已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)当a=-2时,求函数f(x)的解析式;(2)若函数f(x)为单调递减函数;①直接写出... 已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)当a=-2时,求函数f(x)的解析式;(2)若函数f(x)为单调递减函数;①直接写出a的范围(不必证明);②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围. 展开
 我来答
若相失0427
2014-12-07 · 超过64用户采纳过TA的回答
知道答主
回答量:121
采纳率:0%
帮助的人:152万
展开全部
(1)当x<0时,-x>0,又因为f(x)为奇函数,
所以f(x)=-f(-x)=-(-x2+2x)=x2-2x,
 所以f(x)=
?x2?2x,x≥0
x2?2x,x<0

(2)①当a≤0时,对称轴x=
a
2
≤0
,所以f(x)=-x2+ax在[0,+∞)上单调递减,
由于奇函数关于原点对称的区间上单调性相同,所以f(x)在(-∞,0)上单调递减,
所以a≤0时,f(x)在R上为单调递减函数,
当a>0时,f(x)在(0,
a
2
)递增,在(
a
2
,+∞)上递减,不合题意,
所以函数f(x)为单调减函数时,a的范围为a≤0.
②f(m-1)+f(m2+t)<0,∴f(m-1)<-f(m2+t),
又f(x)是奇函数,∴f(m-1)<f(-t-m2),
又因为f(x)为R上的单调递减函数,所以m-1>-t-m2恒成立,
所以t>?m2?m+1=?(m+
1
2
)2+
5
4
恒成立,所以t>
5
4

即实数t的范围为:(
5
4
,+∞).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式