已知函数f(x)=xlnx.(1)求函数f(x)的极值点;(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函

已知函数f(x)=xlnx.(1)求函数f(x)的极值点;(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在[1,e]上的最小值.(e=2.718... 已知函数f(x)=xlnx.(1)求函数f(x)的极值点;(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在[1,e]上的最小值.(e=2.71828…) 展开
 我来答
锄禾942m
2015-01-24 · 超过51用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:128万
展开全部
(1)∵f(x)=xlnx,
∴f′(x)=lnx+1,x>0,
由f′(x)=0,得x=
1
e

x∈(0,
1
e
)时,f′(x)<0;x∈(
1
e
,+∞)时,f′(x)<0,
∴f(x)极小值=f(
1
e
)=
1
e
ln
1
e
=-
1
e

(2)∵f(x)=xlnx,
∴g(x)=f(x)-a(x-1)=xlnx-a(x-1),
∴g′(x)=lnx+1-a,
∴g′(x)=0时,x=ea-1
∴①当ea-1<1时,即a<1时,
g(x)在[1,e]上单调递增,故在x=1处取得最小值为0;
②当1≤e a?1≤e时,即0≤a≤1时,
g(x)在[1,e]内,当x=ea-1取最小值为:
ea-1(a-1)-aea-1+a=a-ea-1
③当ca-1>e时,即a>1时,
g(x)在[1,e]内单调递减,
故在x=e处取得最小值为e-a(e-1)=(1-a)e+1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式