已知tanα,tanβ是方程2x²+3x-7=0的两实数根,则tan(2α+2β)=___.
展开全部
2x2+3x-7=0 解得:x=(-3±√65)/4 那么可令:tanα=(-3+√65)/4,tanβ=(-3-√65)/4 即:sinα=cosα·(-3+√65)/4,sinβ=cosβ·(-3-√65)/4 则:tan(α+β)=sin(α+β)/cos(α+β) =(sinαcosβ+cosαsinβ) / (cosαcosβ-sinαsinβ) =[cosαcosβ·(-3+√65)/4+cosαcosβ·(-3-√65)/4] / [cosαcosβ-cosαcosβ·(-3+√65)(-3-√65)/16] =(-3/2) / (1+56/16) = -1/3 又解:由tanα,tanβ是2x2+3x-7=0的两个解可得: tanα+tanβ = -3/2,tanα·tanβ = -7/2 所以:tan(α+β) = (tanα+tanβ)/(1-tanα·tanβ) = -1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询