展开全部
设方程 x3 + bx2 + cx + d = 0 的三个根为 x1, x2, x3 :
韦达定理告诉我们:
x1 + x2 + x3 = - b
由此我们一眼就能看出,通过平移变换就能使二次项系数变为0。
考虑平移变换 x' = x + b/3,在该变换下,方程的三个根变为
x1' = x1 + b/3, x2' = x2 + b/3, x3' = x3 + b/3
于是
x1' + x2' + x3' = x1 + x2 + x3 + b = -b + b = 0
由韦达定理即知新方程(它的三个根为 x1' , x2' , x3' )的二次项系数等于0。
平移变换 x' = x + b/3 的逆变换为 x = x' - b/3,所以,只要在原方程 x3 + bx2 + cx + d = 0 中作代换
x = x' - b/3,
那么,不用任何计算,我们就知道,新方程(它以 x' 为变元)的二次项系数必为0。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询